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Effects of off-diagonal nonlinearity on the time evolution of an initially localized mode
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A modified one-dimensional nonlinear Schro¨dinger equation which includes off-diagonal nonlinearity is
proposed to describe the behavior of electrons via electron-phonon couplings in the Su-Schrieffer-Heeger
Hamiltonian. We find an interesting self-trapping phenomenon of electrons which takes place when the mag-
nitude of the nonlinearity parameter is close to the value of the hopping integral. For a periodic lattice, the
ballistic propagation of a wave packet is found in this modified one-dimensional nonlinear Schro¨dinger equa-
tion, and the propagation rate increases with the increase of nonlinearity parameter except in the self-trapping
interval. When diagonal disorder is introduced, the electronic states are localized, and no delocalization effect
of the off-diagonal nonlinearity is found. These results are quite different from that in the diagonal nonlinear
lattice, where delocalization is found.@S1063-651X~97!10209-4#

PACS number~s!: 42.25.2p, 52.35.Mw, 71.55.Jv
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I. INTRODUCTION

The study of the interplay of disorder and nonlinearity
of great importance in a variety of fields in condensed-ma
physics. Both are regarded as origins of the localization,
have received much attention since the last decade@1,2#. The
theory of Anderson localization predicts that the wave fu
tion of an electron moving in a one-dimensional lattice w
on-site energy disorder is localized even for an infinitesim
amount of disorder@3–7#. Thus in such systems the mobilit
of electrons is inhibited. On the other hand, nonlinear
arises, for example, from the interaction between electr
and lattice vibrations@8#. This leads to the possibility of the
occurrence of a mobility edge@9#. Furthermore, the interac
tion between electrons and lattice vibrations can lead to
effective correlation between the site energy and the nea
neighbor overlap integral, thus resulting in possible deloc
ization @10#. The most widely used equation describing t
motion of an electron in a one-dimensional lattice w
electron-phonon interaction is the discrete nonlinear Sch¨-
dinger equation~DNLSE! @11–14#

i ċn5encn1V~cn111cn21!2xnucnu2cn , ~1!

wherecn is the wave amplitude at siten, V is the hopping
integral between nearest-neighbor sites,en is the on-site en-
ergy, andxn is a nonlinearity parameter which is propo
tional to the local electron-phonon coupling under an ad
batic approximation@15#. From the above DNLSE we ca
see that whenxn50, and the on-site energy is random
distributed, it reduces to the Anderson model, where all
eigenstates of electrons are localized@3,4#. In dynamics, an
initially localized mode will remain localized in a finite re
gion, and the time-averaged probability to find the particle
the initial site will be significantly larger than 0. However,
nonlinearity and the randomness in the site energies coe
the dynamical localization will be destroyed by nonlineari
Shepelansky found that when the nonlinearity paramete
greater than a critical valuexncr

, the motion of a wave packe
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will be subdiffusive for large time@16#. Recently, Molina
and Tsironis introduced a nonlinear random binary al
~NRBA! model @17#, where two species of sites with differ
ent nonlinearity parameters are randomly distributed, and
disorder resides completely in the nonlinear term. They st
ied the dynamical localization of the NRBA, and found th
absence of electronic localization except for a very la
nonlinearity parameter. The presence of disorder is co
pletely overcome by the nonlinear term, leading to ballis
propagation of the untrapped fraction of the electrons.

Another important property of the DNLSE is the se
trapping phenomenon@11,18–20#, i.e., the clustering of the
electron amplitude on a single site. When the nonlinea
parameter is greater than the critical value 4V, self-trapping
occurs. Thus the probability of finding the particle at t
initial site is always nonzero.

The electron-phonon interaction included in the DNLS
describes the lattice vibrations coupled to the diagonal e
tronic matrix element of the electron Hamiltonian, we c
this diagonal nonlinearity. In fact, the lattice vibration ca
also be coupled to the off-diagonal electronic matrix e
ments@21#. It is then interesting to investigate the combin
effects of disorder and off-diagonal nonlinearity on the loc
ization and transport properties of a low-dimension
condensed-matter system.

In this paper we investigate the self-trapping and the
namical localization property of a modified nonlinear Sch¨-
dinger equation~MNLSE! which is proposed to describe th
off-diagonal nonlinearity caused by the electron-phonon c
pling in a Su-Schrieffer-Heeger~SSH! Hamiltonian. In Sec.
II of this paper we describe the origin of the MNLSE fro
the SSH Hamiltonian. In Sec. III we study the dynamic
properties of the MNLSE in a periodic lattice, and in Sec.
we investigate the combined effects of off-diagonal nonl
earity and on-site energy disorder on the localization of el
trons. In Sec. V we give a brief summary.

II. MODEL

We consider an electron moving in polyacetylene or ot
polymers. When we take into account the interaction
4744 © 1997 The American Physical Society
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tween thep electrons and the lattice vibrations, we can u
the SSH Hamiltonian@21#

H5 1
2 M(

n
uu̇nu21 1

2 K(
n

~un2un11!2

2(
n

„t01a~un2un11!…~cn
†cn111cn11

† cn!, ~2!

where un is the displacement of lattice,t0 is the intrinsic
hopping integral,a is the electron-phonon coupling constan
andcn is the electron probability amplitude at siten.

From a variational calculation with the adiabatic appro
mation, it is found that the displacement of each bond
proportional to local electron density at its ends. Substitut
this into the expression of the SSH Hamiltonian yields
equation of motion of electrons, the MNLSE:

i ċn5encn1V~cn111cn21!1vn~ ucnu21ucn11u2!cn11

1vn~ ucnu21ucn21u2!cn21 , ~3!

wherevn is a parameter describing the electron-phonon c
pling, and en is the on-site energy which is added to t
equation.

The dynamical properties of the MNLSE can be inves
gated by considering the time evolution of a wave pac
which is initially localized at siten0 :

cn~0!5dn,n0
. ~4!

The propagation of the wave packet can be characterize
several quantities. One of them is the time-dependent p
ability to find the particle at the initial site,

W0~ t !5ucn0
~ t !u2, ~5!

and the others are the mean square displacement~MSD! and
the participation number, which are defined as

„Dn~ t !…25(
n

~n2n0!2ucn~ t !u2, ~6!

P~ t !5F(
n

ucn~ t !u4G21

, ~7!

respectively.
The root-mean-square displacement usually follows

power law

Dn~ t !;tg. ~8!

Wheng50 the wave packet is localized, when 0,g, 1
2 it is

subdiffusive, g5 1
2 corresponds to a diffusive behavio

1
2 ,g,1 corresponds to a superdiffusive behavior,g51
means that the motion is ballistic, andg.1 means it is su-
perballistic. The participation numberP(t) gives a rough
estimation of the number of sites where the wave packet
a significant amplitude. WhenP51, the wave packet is com
pletely localized, and whenP5N, the wave packet is uni
formly distributed over the whole lattice corresponding to
completely extended behavior.
e

,
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In order to obtain the above quantities, the fourth-ord
Runge-Kutta method is employed to numerically integrat
the MNLSE. To avoid the end effects, the system should
large enough to ensure that the wave amplitude near
boundaries satisfiesucnu2,10230 during the integration. The
integration step is determined in the following way: we st
decreasing the step until the integration results do not cha
~normally for 5–6 significant digits! with the variation of the
step.

III. DYNAMICAL PROPERTIES OF THE MNLSE
IN A PERIODIC LATTICE

In this section we will concentrate on the dynamical pro
erties of the MNLSE in a periodic lattice. The lattice w
study consists of 5000 sites. Without loss of generality
set all the on-site energies equal to zero in this section,
vn takes an identical value for all bonds. Since the transf
mation (V,vn)→(2V,2vn) only turns the MNLSE into an
equation for the complex conjugate variablecn* (t), and as a
result the site probabilityrn5cncn* 5ucnu2 remains invariant,
it is then sufficient to takeV.0 and consider two possibl
signs ofvn . For the sake of convenience, we setV51. The
particle is initially localized on the central siten052500.

We calculate the time evolution of the probability to fin
the electron at the initial site, the mean-square displacem
and the participation number of the system for different no
linearity parameters. The results are shown in the follow
figures.

In Fig. 1 we show how the probability of finding th
particle at the initial siteW0(t) varies with time for different
nonlinearity parameters. From Fig. 1 we can see thatW0(t)
always approaches zero whenvn.0. But for large nonlinear-
ity parameters,W0(t) oscillates for some time before deca
ing to zero. No self-trapping occurs when the nonlinear
parameter is positive.

Whenvn is negative,W0(t) keeps a relatively large valu
at the initial site for some time, and then decays rapidly

FIG. 1. The time evolution of the return-to-initial site probab
ity W0(t) in a periodic lattice for different nonlinearity parameter
The nonlinearity parameters for curves~1!–~9! are 21.0V,
21.05V, 21.2V, 21.3V, 20.9V, 21.4V, 0, 23.0V, and 1.05V,
respectively. Curves~1!–~4! represent self-trapping states, oth
curves decay rapidly.
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zero. When the magnitude of the nonlinearity parameter
creases towardV, the length of this transient time increas
until it becomes infinite whenuvnu5V, and the probability of
finding the particle at the initial site rapidly approaches
constant which is significantly larger than 0. Whenuvnu.V
anduvnu is less than an upper critical valuevc , this phenom-
enon still exists. However, whenuvnu is larger thanvc , the
initial-site probability decays to zero after a transient tim
Again, this transient time decreases whenuvnu increases from
vc .

In order to determine the value ofvc , we calculate the
time-averaged probability of finding the particle at the init
site for different nonlinearity parameters,

^W0~ t !&5 lim
T→`

1

T E
0

T

ucn0
~ t !u2dt, ~9!

and show the dependence of^W0(t)& on vn in Fig. 2. In the
figure we can see that there is a rapid growth of^W0& at
uvnu5V, and it drops to zero atuvnu51.4V. Thusvc51.4V,

FIG. 2. The dependence of the time-averaged initial-site pr
ability ^W0(t)& on nonlinearity parameters. Whenuvnu is less than
V, ^W0(t)& is zero. Whenuvnu is greater than 1.4V, it is again zero.
We can see rapid changes of^W0(t)& at uvnu5V and uvnu51.4V.
-

.

l

which is determined from the condition̂W0(t)&50, andvc

only slightly depends on the number of sites in our numeri
studies. Only whenvn is negative and the magnitude of
lies in the interval (V,1.4V) does the self-trapping occur
When vn52V, W0(t) is exactly equal to 1.0 at any time
This means that the particle is completely trapped on
initial site whenvn52V. We can see from the MNLSE tha
it is possible for the right-hand side of the equation to
zero whenvn,0. Whenvn52V, the right-hand site of the
MNLSE is zero at the initial time, and does not change f
ever, resulting in the constant^W0(t)&51.0. The result for
this off-diagonal nonlinearity is quite different from the re
sults of previous work on diagonal nonlinearity@11,18–20#.
For diagonal nonlinearity, self-trapping becomes more a
more eminent with the increase of the nonlinearity para
eter.

In Fig. 3 we demonstrate the root-mean-square displa
ment of the wave packet as a function of time for differe
nonlinearity parameters. Numerical studies show that,
large time, the wave packet propagates ballistically des
the sign and magnitude ofvn . In this nonlinear lattice with
off-diagonal nonlinearity, the velocity of the wave packet
greater than&, the propagation rate for the linear period
lattice. Also this rate increases with the increase of non
earity parameter when it lies outside the self-trapping int
val. If we take a closer look at the detail of the time evol
tion of the wave packet~see the inset of Fig. 3!, we can see
that, in this nonlinear lattice, the wave packet propaga
ballistically at a rate less than that in linear lattice whent is
less then a valuet1 . After this time instant, the curve bend
over, showing a slope larger than&, and thenDn(t) grows
linearly with time at this rate. Conversely, in the diagon
nonlinearity case, the rate is smaller than&, and decreases
with the increase of the nonlinearity parameter@22#. In the
MNLSE, when self-trapping occurs, most of the wave pac
is trapped, but the untrapped portion escapes ballistic
with a relatively slower velocity. However, whenvn52V,
the velocity is zero since the wave packet is wholly trapp
in the initial site. The fact that the motion is ballistic eve
when self-trapping occurs can be understood as follo

-
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f-

s
en
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n

FIG. 3. The root-mean-square displaceme
of the wave packet as a function of time for di
ferent nonlinearity parameters. The unit ofDn(t)
is a/V, wherea is the lattice spacing. The inset i
the detail at the beginning. We can see that wh
no self-trapping occurs, the propagation rate
the wave packet is greater than that in linear l
tice, and the propagation is ballistic even whe
self-trapping occurs.
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FIG. 4. The participation numberP(t) as a
function of time for different nonlinearity param
eters.
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when self-trapping occurs, there is some portion of the pr
ability amplitude escaping from the initial site before t
self-trapped state is formed. This escaping portion is re
tively small, especially on sites other than the initial si
Thus, because of the smallness of the nonlinear terms in
MNLSE, the motion of this escaping portion is weakly a
fected by the nonlinearity. The propagation rate of the wa
packet is smaller when self-trapping occurs because of
decrease of the escaping portion.
-

-
.
he

e
e

Figure 4 shows how the participation numberP(t) of the
system varies with time for different nonlinearity paramete
We can see that in the linear case it grows linearly with tim
indicating a uniform spreading of the wave packet over
chain. In the nonlinear case we find that when the nonline
ity parameter lies outside the self-trapping interval, the p
ticipation number oscillates quickly at first, after a long tim
the oscillation becomes smaller, and thenP(t) grows lin-
early with time. When the nonlinearity parameter increas
FIG. 5. W0(t) as a function of time for different nonlinearity parameters with on-site energy disorder. In~a!–~d!, the probability is always
nonzero, indicating a localized mode. In~d!, the probability is very close to 1.0.
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P(t) oscillates even more dramatically. Whenvn is outside
but close to the self-trapping interval,P(t) is quite small at
first, then abruptly ‘‘climbs’’ to a much larger value, an
then begins to grow linearly. When nonlinearity paramete
within the self-trapping region, the participation number
very small ~close to 1.0!, indicating the existence of a
trapped mode.

IV. DYNAMICAL PROPERTIES OF THE MNLSE
IN A DISORDERED LATTICE

In order to investigate the combined effect of off-diagon
nonlinearity and diagonal disorder on the localization, we
the on-site energy in the MNLSE randomly distribut
within the interval (20.5V,0.5V), and the nonlinearity pa
rameter is taken to be identical for every bond. The intrin
hopping integralV is set to 1. The number of lattice sites
5000. The wave packet is initially localized on the 2500

FIG. 6. Root-mean-square displacement vs time in a disord
lattice for different nonlinearity parameters. The unit ofDn(t) is
a/V, wherea is the lattice spacing. The nonlinearity parameters
curves ~1!–~5! are 210.0V, 24.0V, 20.8V, 0, and21.0V, re-
spectively. It grows rapidly at first and then saturates.

FIG. 7. Participation number vs time in disordered lattice
different nonlinearity parameters. The nonlinearity parameters
curves~1!–~5! are 220.0V, 210.0V, 21.5V, 0, and21.0V, re-
spectively.
s

l
t

c

site, and we choose open boundary conditions.
The return-to-initial-site probability is shown in Fig. 5. In

this figure we can see that there is always a finite probabili
to find the particle at the initial site no matter the magnitud
of the nonlinearity parameter. The results change little whe
the nonlinearity parameter takes a positive sign, which is n
shown in the figure.W0(t) in the nonlinear disordered lattice
for the nonlinearity parameter outside the self-trapping rang
is less than that in the linear one at the same time insta
indicating that the off-diagonal nonlinearity to some exten
reduces the localization of the wave packet. Whenvn is lo-
cated within the self-trapping interval,W0(t) is always quite
large, i.e., the nonlinearity effect dominates in this case; th
only effect of diagonal disorder is to broaden the probabilit
distribution.

ed

r

r
r

FIG. 8. The spatial distribution of a wave packet for fixed non
linearity parametersvn520.9V at different time instants for a dis-
ordered lattice.~a! Vt5100.~b! Vt5500.~c! Vt51000. The spatial
distribution is within a finite region, and it changes little with time.
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FIG. 9. The spatial distribution of a wav
packet for a periodic lattice with fixed nonlinea
ity parametervn520.8V at different time in-
stants.
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Figure 6 gives the root-mean-square displacement for
ferent nonlinearity parameters. We can see thatDn(t) grows
rapidly with time at first, indicating an initial expansion o
the wave packet, and after some time the growth beco
very slow. The wave packet is still localized in this cas
However,Dn(t) is larger for larger nonlinearity parameter
indicating that the wave packet is less localized in the o
diagonal nonlinear lattice than in the linear one. By fitti
the curves, we find thatg in Eq. ~8! is 0 in this case, while in

the disordered lattice with diagonal nonlinearityg5 1
5 .

Figure 7 shows the time dependence of the participa
number. It oscillates quickly and is not unlimited. We s
that the participation number is quite small compared to
lattice length. In the nonlinear disordered case, the partic
tion number is larger than that in the linear disordered ca
indicating that off-diagonal nonlinearity can to some exte
enhance the width of wave packet.

In order to show more clearly the configuration of wa
packet, we demonstrate the spatial distribution of the w
packet in Figs. 8 and 9. In Fig. 8 we show the spatial dis
bution of the wave packet at different time instants for
given nonlinearity parametervn520.9V. We can see tha
the spatial distribution changes little with time. The on
effect of the off-diagonal nonlinearity is that the wave a
plitude at the initial site is smaller than that in the line
lattice at the same time instant. The width of the wave pac
is broadened due to off-diagonal nonlinearity. As a comp
son we plot the spatial distribution of the wave packet of
MNLSE in a nonlinear periodic lattice in Fig. 9. There a
two peaks at the two ends of the wave packet, and the
tribution is under an envelope curve. This distribution in t
nonlinear periodic lattice is similar to the result of that in t
si

v-
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linear periodic lattice@23# since the wave packet propagat
ballistically in the nonlinear lattice just as in linear one.

V. SUMMARY

The dynamical properties of the MNLSE have been inv
tigated by studying the time evolution of wave packet
periodic and disordered lattice for different nonlinearity p
rameters. In the periodic lattice we find an interesting se
trapping phenomenon that occurs only in a narrow interva
the nonlinearity parameter, which is different from the r
sults of diagonal nonlinearity, where self-trapping always o
curs if the nonlinearity parameter is greater than a criti
value. According to our results, the self-trapping occu
when vn is negative anduvnu lies in the interval (V,1.4V).
The wave packet propagates ballistically in the MNLSE in
periodic lattice. When self-trapping occurs, the wave pac
propagates ballistically at a rate less than that of the unt
ping case. Contrary to the results of the diagonal nonlinea
case, the propagation velocity of a wave packet in
MNLSE is greater than that in a linear lattice, and it i
creases with the increase of the nonlinearity parameter. T
off-diagonal nonlinearity can help to enhance the propa
tion of an initially localized mode in a periodic lattice. As fo
the combined effects of off-diagonal nonlinearity and diag
nal disorder on localization, we find that off-diagonal no
linearity cannot destroy localization as diagonal nonlinea
does. The existence of off-diagonal nonlinearity only sligh
expands the localized wave packet.
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